skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Sarkar, Kausik"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. A novel multi-responsive nanocomposite integrates polypyrrole-coated magnetic nanoparticles into a thermo-responsive shape memory polymer, enabling precise, remotely dynamic control for 4D-printed biorobotic applications. 
    more » « less
    Free, publicly-accessible full text available June 3, 2026
  2. Hydrogels have emerged as a crucial class of materials within the field of tissue engineering. There is growing interest in matching the mechanical properties of hydrogel scaffolds to tissues in the human body and optimizing these properties for cell growth and differentiation. Gelatin methacrylate (GelMA) is a well-accepted, biocompatible hydrogel with tunable mechanical properties. However, the effects of various formulation parameters on its mechanical properties are not well understood. In this study, an array of GelMA scaffold fabrication parameters is evaluated by varying GelMA concentration and ultraviolet light exposure time. Our overarching goal is to characterize the mechanical properties through ultrasound and rheological measurements, providing a framework for GelMA scaffold selection. Pulse-echo ultrasound techniques were used to non-invasively determine the sound speed and attenuation of the scaffolds, revealing significant dependence on GelMA concentration. Steady shear rate and strain- and frequency-controlled oscillatory shear tests using a rotational rheometer (Model: DHR-2, TA Instruments) revealed a range in the levels of shear-thinning as well as viscoelasticity and showed moduli-dependence on both GelMA concentration and light exposure time. Together, this acoustic and rheological characterization can be used to inform the selection of GelMA scaffolds in tissue engineering applications. 
    more » « less
  3. Atomic Force Microscopy (AFM) force-distance (FD) experiments have emerged as an attractive alternative to traditional micro-rheology measurement techniques owing to their versatility of use in materials of a wide range of mechanical properties. Here, we show that the range of time dependent behaviour which can reliably be resolved from the typical method of FD inversion (fitting constitutive FD relations to FD data) is inherently restricted by the experimental parameters: sampling frequency, experiment length, and strain rate. Specifically, we demonstrate that violating these restrictions can result in errors in the values of the parameters of the complex modulus. In the case of complex materials, such as cells, whose behaviour is not specifically understood a priori , the physical sensibility of these parameters cannot be assessed and may lead to falsely attributing a physical phenomenon to an artifact of the violation of these restrictions. We use arguments from information theory to understand the nature of these inconsistencies as well as devise limits on the range of mechanical parameters which can be reliably obtained from FD experiments. The results further demonstrate that the nature of these restrictions depends on the domain (time or frequency) used in the inversion process, with the time domain being far more restrictive than the frequency domain. Finally, we demonstrate how to use these restrictions to better design FD experiments to target specific timescales of a material's behaviour through our analysis of a polydimethylsiloxane (PDMS) polymer sample. 
    more » « less
  4. Hydrodynamic interactions generate a diffusive motion in particulates in a shear flow, which plays seminal roles in overall particulate rheology and its microstructure. Here we investigate the shear induced diffusion in a red-blood cell (RBC) suspension using a numerical simulation resolving individual motion and deformation of RBCs. The non-spherical resting shape of RBCs gives rise to qualitatively different regimes of cell dynamics in a shear flow such as tank-treading, breathing, tumbling and swinging, depending on the cell flexibility determined by the elastic capillary number. We show that the transition from tumbling to tank-treading causes a reduction in the gradient diffusivity. The diffusivity is computed using a continuum approach from the evolution of a randomly packed cell-layer width with time as well as by the dynamic structure factor of the suspension. Both approaches, although operationally different, match and show that for intermediate capillary numbers RBCs cease tumbling accompanied by a drop in the coefficient of gradient diffusivity. A further increase of capillary number increases the diffusivity due to increased deformation. The effects of bending modulus and viscosity ratio variations are also briefly investigated. The computed shear induced diffusivity was compared with values in the literature. Apart from its effects in margination of cells in blood flow and use in medical diagnostics, the phenomenon broadly offers important insights into suspensions of deformable particles with non-spherical equilibrium shapes, which also could play a critical role in using particle flexibility for applications such as label free separation or material processing. 
    more » « less
  5. Shear-induced pair interactions between viscous drops suspended in a viscoelastic matrix are numerically investigated examining the effects of elasticity and drop deformability on their post-collision trajectory. Two different trajectory types are identified depending on the Weissenberg number Wi and capillary number Ca. Drops suspended in a Newtonian matrix ( Wi =  0.0) show a passing trajectory where drops slide past each other and separate in the stream-wise direction. However, when increasing the Weissenberg number above a critical value, a tumbling/doublet trajectory is observed where two drops rotate around the midpoint of the line joining their centers, as was also seen previously for rigid particles. The tumbling trajectory is explained by investigating the flow around a single drop in shear. Elasticity generates a larger region of spiraling streamlines around a drop, which, during a pair interaction, traps the second drop giving rise to the tumbling pair. Decreasing deformability (lower Ca) and increasing viscoelasticity (higher Wi) favor a tumbling trajectory. With simulations sweeping the parameter space, we obtain a phase plot of the two different trajectories as functions of Ca and Wi. Treating the tension along the curved streamlines due to the non-zero first normal stress difference in the viscoelastic medium as an enhancement to the interfacial tension, we have developed an approximate force balance model for the zone of spiraling streamlines. It qualitatively captures the observed scaling of the critical Ca and Wi values at the phase boundary. The effects of unequal size, initial configuration, and non-unity viscosity ratio are briefly investigated. 
    more » « less
  6. Experimentally observed drop-chain formation in sheared drop monolayers is explained in terms of Hele-Shaw quadrupolar interactions and swapping-trajectory repulsion. 
    more » « less